Extensions 1→N→G→Q→1 with N=C22 and Q=C12⋊S3

Direct product G=N×Q with N=C22 and Q=C12⋊S3
dρLabelID
C22×C12⋊S3144C2^2xC12:S3288,1005

Semidirect products G=N:Q with N=C22 and Q=C12⋊S3
extensionφ:Q→Aut NdρLabelID
C22⋊(C12⋊S3) = C12⋊S4φ: C12⋊S3/C12S3 ⊆ Aut C22366+C2^2:(C12:S3)288,909
C222(C12⋊S3) = C6219D4φ: C12⋊S3/C3×C12C2 ⊆ Aut C22144C2^2:2(C12:S3)288,787
C223(C12⋊S3) = C6212D4φ: C12⋊S3/C2×C3⋊S3C2 ⊆ Aut C2272C2^2:3(C12:S3)288,739

Non-split extensions G=N.Q with N=C22 and Q=C12⋊S3
extensionφ:Q→Aut NdρLabelID
C22.1(C12⋊S3) = C24.78D6φ: C12⋊S3/C3×C12C2 ⊆ Aut C22144C2^2.1(C12:S3)288,761
C22.2(C12⋊S3) = C62.110D4φ: C12⋊S3/C2×C3⋊S3C2 ⊆ Aut C2272C2^2.2(C12:S3)288,281
C22.3(C12⋊S3) = C62.37D4φ: C12⋊S3/C2×C3⋊S3C2 ⊆ Aut C2272C2^2.3(C12:S3)288,300
C22.4(C12⋊S3) = C62.69D4φ: C12⋊S3/C2×C3⋊S3C2 ⊆ Aut C22144C2^2.4(C12:S3)288,743
C22.5(C12⋊S3) = C243D6φ: C12⋊S3/C2×C3⋊S3C2 ⊆ Aut C2272C2^2.5(C12:S3)288,765
C22.6(C12⋊S3) = C24.5D6φ: C12⋊S3/C2×C3⋊S3C2 ⊆ Aut C22144C2^2.6(C12:S3)288,766
C22.7(C12⋊S3) = C6.4Dic12central extension (φ=1)288C2^2.7(C12:S3)288,291
C22.8(C12⋊S3) = C242Dic3central extension (φ=1)288C2^2.8(C12:S3)288,292
C22.9(C12⋊S3) = C241Dic3central extension (φ=1)288C2^2.9(C12:S3)288,293
C22.10(C12⋊S3) = C62.84D4central extension (φ=1)144C2^2.10(C12:S3)288,296
C22.11(C12⋊S3) = C62.15Q8central extension (φ=1)288C2^2.11(C12:S3)288,306
C22.12(C12⋊S3) = C2×C242S3central extension (φ=1)144C2^2.12(C12:S3)288,759
C22.13(C12⋊S3) = C2×C325D8central extension (φ=1)144C2^2.13(C12:S3)288,760
C22.14(C12⋊S3) = C2×C325Q16central extension (φ=1)288C2^2.14(C12:S3)288,762
C22.15(C12⋊S3) = C2×C12⋊Dic3central extension (φ=1)288C2^2.15(C12:S3)288,782
C22.16(C12⋊S3) = C2×C6.11D12central extension (φ=1)144C2^2.16(C12:S3)288,784

׿
×
𝔽